

Agriculture Sensor

Technical Reference Manual

Document Type: Technical Reference Manual

Document Number: T0005978 TRM

Document Version: 1.8

Product Name: Agriculture Sensor

Product Codes: T0005982 (Agriculture Sensor, Soil Surface Mount Module, NA)

T0005983 (Agriculture Sensor, Soil Surface Mount Module, EU)

T0005986 (Agriculture Sensor, Elevated Mount Module, NA)

T0005987 (Agriculture Sensor, Elevated Mount Module, EU)

Release Date: June 30, 2022

PROPRIETARY:

The information contained in this document is the property of TEKTELIC Communications Inc. Except as specifically authorized in writing by TEKTELIC, the holder of this document shall keep all information contained herein confidential, and shall protect the same in whole or in part from disclosure to all third parties.

© 2020 TEKTELIC Communications Inc., all rights reserved.

All products, names, and services are trademarks and registered trademarks of their respective companies.

DISCLAIMER:

Material contained in this document is subject to change without notice. The material herein is solely for information purposes and does not represent a commitment by TEKTELIC or its representatives. TEKTELIC has prepared the information contained in this document solely for use by its employees, agents, and customers. Dissemination of this information and/or concepts to other parties is prohibited without the prior written consent of TEKTELIC. In no event will TEKTELIC be liable for any incidental or consequential damage in connection with the furnishing, performance or use of this material.

TEKTELIC reserves the right to revise this publication in accordance with formal change control procedures defined by TEKTELIC.

Revision History

Version	Date	Editor	Comments
0.1	May 29, 2019	Reza Nikjah	Initial release
0.2	May 30, 2019	Reza Nikjah	Edited based on feedback
0.3	Jun 14, 2019	Devin Smith	Revisions based on implementation
0.4	Nov 21, 2019	Mark Oevering	Updated PN's for modules
0.5	Jan 15, 2020	Reza Nikjah	Various updates
0.6	April 21, 2020	Mark Oevering	Changed ALS thresholds.
			 Made changes to specify separate information for Soil Surface Mount and Elevated Mount modules.
			Various changes based on feedback from Reza & Gin.
			Change to register 70 description.
			Change to battery status register.
			Change to naming of both modules.
			Change to default configuration for both sensors; disabled
			ambient temperature and humidity.
1.0	April 21, 2020	Mark Oevering	Release
1.1	June 5, 2020	Mark Oevering	Change to default configuration for Soil Surface Mount
			Changed formula for battery voltage, Table 2-1, Page 13
			Added ALS sample period for inactive state, Table 3-7
1.2	June 15, 2020	Mark Oevering	Change to Input 1 conversion Section 2.2.1
1.3	July 6, 2020	Mark Oevering	Correction to Table 2-1
1.4	July 31, 2020	Mark Oevering	Correction to battery calculation, Table 2-1
1.5	September 23,	Mark Oevering	Fixes in Table 3-6 Description column.
	2020		• Fixed typo on Register 0x 0C 67, was 1 byte, now 2 bytes (Table
			2-1)
1.6	May 31, 2021	Mark Oevering	Added note at the beginning of Section 2.2
1.7	August 27, 2021	Mark Oevering	• Correction to Table 3-6, Register 3F; deleted bits 2, 3 as they are
			not "ignored"
1.8	June 30, 2022	Mark Oevering	Added note about blank uplink on page 12

Table of Contents

R	evision	ı Hist	tory	2
Li	st of T	ables	S	4
Li	st of F	igure	es	5
Α	cronyn	ns ar	nd Glossary	6
1	Ove	ervie	w	8
	1.1	Ree	ed Switch Operation	10
2	UL	Paylo	oad Formats	13
	2.1	Fra	me Payload to Report Transducers Data	13
	2.2	Dat	ta Conversions for Inputs 1, 2, & Watermarks 1, 2	15
	2.2.	.1	Soil Moisture (Input 1) Conversion	15
	2.2.	.2	Soil Temperature (Input 2) Conversion	16
	2.2.	.3	Watermark 1 & 2 Conversion	16
	2.3	Res	sponse to Configuration and Control Commands	18
3	DL	Paylo	oad Formats	19
	3.1	Cor	nfiguration and Control Commands	19
	3.1.	.1	LoRaMAC Configuration	20
	3.1.	.2	Application Configuration	22
	3.1.	.3	Command and Control	35
	3.1.	.4	Preventing Sensor Bricking	38

List of Tables

Table 1-1: Agricultural Sensor Models	9
Fable 1-2: Agriculture Sensor Region Specific Variants	9
Fable 2-1: UL Frame Payload Values for Transducers Data	13
Table 2-2 Input 1 GWC Conversion	16
Fable 2-3 Watermark 1 & 2 Conversion	17
Table 3-1: LoRaMAC Configuration Registers	20
Table 3-2: Default Values of LoRaMAC Configuration Registers	21
Fable 3-3: Default Maximum Tx Power in Different Regions	21
Table 3-4: Default Values of Rx2 Channel Frequency and DR Number in Different Regions	22
Table 3-5: Periodic Transmission Configuration Registers	22
Table 3-6: Threshold-Based Transmission Configuration	26
Table 3-7: ALS Configuration Registers	32
Table 3-8: Default Values of ALS Configuration Registers	34
Table 3-9: Accelerometer Configuration Registers	34
Table 3-10: Default Values of Accelerometer Configuration Registers	35
Гable 3-11: Sensor Command & Control Register	36
Table 3-12: LoRaMAC Regions and Region Numbers	37

List of Figures

Figure 1-1: Reed Switch Location	11
Figure 1-2: Agriculture Sensor magnetic reset/wake-up pattern	12
Figure 1-3: Agriculture Sensor magnetic UL-triggering pattern	12
Figure 2-1: The UL frame payload format	13
Figure 3-1: The format of a DL configuration and control message block	19

Acronyms and Glossary

ABP	activation by personalization
ADR	adaptive data rate
ALS	ambient light sensor
cbar	centibar
CRC	cyclic redundancy check
DL	downlink
DR	data rate
EIRP	effective isotropic radiated power
<i>EoS</i>	end of service
FALSE	logical "false"
Flash memory	Non-volatile memory located on the Home Sensor, which contains
application and confi	guration settings
<i>FW</i>	firmware
<i>GWC</i>	gravimetric water content
<i>ID</i>	identity / identifier
<i>IoT</i>	Internet of things
<i>ISM</i>	industrial, scientific, and medical
LoRa	a patented "long-range" IoT technology acquired by Semtech
LORAMAC	LoRaWAN MAC
LoRaWAN	LoRa wide area network (a network protocol based on LoRa)
LoRaWAN Commission	oning the unique device identifiers and encryption keys used for LoRaWAN
communication (see	LoRaWAN Specification [1] for more details).
LSB	least significant bit
LTC	lithium thionyl chloride (the chemistry of LTC batteries)
<i>lx</i>	lux
<i>MAC</i>	medium access control
MCU	microcontroller unit
min	minute
ms	millisecond(s)
MSB	most significant bit
NS	network server
OTA	over-the-air
OTAA	OTA activation
Reg	register
RH	relative humidity
<i>RF</i>	. radio frequency

RO read-only
R/W read/write
Rx receiver
<i>sec</i> second
Sensor LoRa IoT Agricultural Sensor module
Sensor and Probe LoRa IoT Soil Surface Mount Agricultural Sensor and Probe module
<i>SW</i> software
Transducer the sensing element attached to the Industrial Sensor, e.g. the
temperature and RH transducer
TRM technical reference manual
TRUElogical "true"
TX transmitter
<i>UL</i> uplink

1 Overview

This TRM describes the UL and DL frame payloads supported by the LoRa IoT Agricultural Soil Surface Mount Sensor, referred to as the Soil Surface Mount Sensor henceforth, and by the LoRa IoT Agricultural Elevated Mount Sensor, referred to as the Elevated Mount Sensor henceforth.

This document is intended for a technical audience, such as application developers, with an understanding of the NS and its command interfaces.

This TRM is only applicable to the Agricultural Sensor modules listed in Table 1-1.

Both the Soil Surface Mount Sensor and the Elevated Mount Sensor are LoRaWAN IoT sensors intended for agricultural measurements. They are powered by a C-cell LTC battery and utilize a small IP67 casing. Both sensors features operating temperature of -40°C to 85°C, an ambient temperature and RH transducer, MCU temperature transducer, ALS, and accelerometer (for movement, or orientation change detection). PLEASE NOTE; if the unit is placed in direct sunlight the temperature reported will not be ambient temperature of the environment but sensor case temperature. Temperature and humidity reporting are turned off in the SW by default for this reason in the Elevated Mount module. These functions can be turned on by the user depending on the use case.

Both sensors are also equipped with a battery gauge which sends an EoS alarm¹ when the battery capacity left is approximately 5%. The battery lifetime of the Soil Surface Mount sensor or the Elevated Mount sensor is expected to be at least 10 years.²

The Elevated Mount Sensor provides an interface to two Watermark probes (Inputs 5 and 6) and two analog inputs (Inputs 3 and 4). Inputs 3 and 4 are intended to be used with the thermistors that are supplied alongside the Watermark probes.

When paired with the probes (metal spikes), the Sensor forms the Soil Surface Mount module. The Probe is interfaced to two inputs of the Sensor and provides measurements for soil moisture (GWC) and soil temperature.

Table 1-1 presents the currently available Agriculture Sensor HW variants. Also, Table 1-2 lists the Agriculture variants for the different RF regions identified by the LoRa Alliance [2]—also see [2] for the Tx and Rx bands in each LoRaWAN region.

¹ The EoS alarm is not supported in SW prior to version 1.0.

² This is for transmission at maximum power every 15 minutes at room temperature, with an LTC battery having a nominal capacity of 8.5 Ah and self-discharge rate of 0.7%. Large variations to this estimate can occur depending on the ambient temperature, amount of usage, battery capacity, and battery self-discharge rate. For example, continuously being at -30°C and transmitting at maximum power every minute, the same battery may not last above a year.

Table 1-1: Agricultural Sensor Models

Product Code	Description	LoRa RF Region and Band
T0005982	Module, Agriculture Sensor, Soil Surface Mount, LoRa, NA	US915: 902-928 MHz (ISM Band)
T0005983	Module, Agriculture Sensor, Soil Surface Mount, LoRa, EU	EU868: 863-870 MHz (ISM Band)
T0005986	Module, Agriculture Sensor, Elevated Mount, LoRa, NA	US915: 902-928 MHz (ISM Band)
T0005987	Module, Agriculture Sensor, Elevated Mount, LoRa, EU	EU868: 863-870 MHz (ISM Band)

Table 1-2: Agriculture Sensor Region Specific Variants

LoRaWAN RF Variant	Corresponding HW Variant	Order Code
EU868	EU T0005983	AGRSNPEU868
EU868	EU T0005987	AGRSNNEU868
US915	NA T0005982	AGRSNPUS915
US915	NA T0005986	AGRSNNUS915
AS923	NA T0005982	AGRSNPAS923
AS923	NA T0005986	AGRSNNAS923
AU915	NA T0005982	AGRSNPAU915
AU915	NA T0005986	AGRSNNAU915
IN865	EU T0005983	AGRSNPIN865
IN865	EU T0005987	AGRSNNIN865
KR920	NA T0005982	AGRSNPKR920
KR920	NA T0005986	AGRSNNKR920
RU864	EU T0005983	AGRSNPRU864
RU864	EU T0005987	AGRSNNRU864

Information streams currently supported by the SW are as follows:

- Readings obtained from on-board transducers (sent in UL, LoRaWAN port 10)
- Configuration and control commands from the NS used to change the Sensor's behavior in the DL (sent in DL, LoRaWAN port 100)
- Response to configuration and control commands from the NS (sent in UL, LoRaWAN port 100)

The default configuration of the **Soil Surface Mount** Sensor for reporting transducer readings includes the following:

- Report battery status every day.
- Report ambient temperature every 15 min.
- Report relative humidity every 15 min.
- Report soil moisture every 15 min.
- Report soil temperature every 15 min.
- Report ambient light every 15 min.

The default configuration of the **Elevated Mount** Sensor for reporting transducer readings includes the following:

- Report battery status every day.
- Report Input 5 every 15 min.
- Report Input 6 every 15 min.
- Report ambient light every 15 min.

1.1 Reed Switch Operation

The Agriculture Sensor is equipped with a magnetic reed switch. The reed switch can be operated by the provided magnet, and is used for the following purposes:

1) MCU reset upon observing a specified magnetic pattern:

This is mainly used to wake up the module from DEEP SLEEP and having it try to join the network. When the module comes out of the factory, it is in the DEEP SLEEP mode,⁴ and can be activated using the specified magnetic pattern. Also, the same magnetic pattern can just be used to reset the Agriculture Sensor during normal operation, getting it to try to rejoin the network.

The magnetic pattern in this application is hard coded (not user configurable) as illustrated in Figure 5. A magnet presence is achieved by attaching the magnet to the

_

⁴ The Agriculture Sensor will go to DEEP SLEEP whenever the internal sleep button on the PCBA (labeled SW1) is pressed. This is performed as the last step in the factory before closing the enclosure. The only ways to activate the module out of DEEP SLEEP is to apply the specified magnetic pattern or to open the enclosure and remove and reinsert the battery.

enclosure at the magnet sign. A magnet absence is achieved by taking the magnet away from the enclosure. The magnet sign is illustrated in Figure 1-1 below:

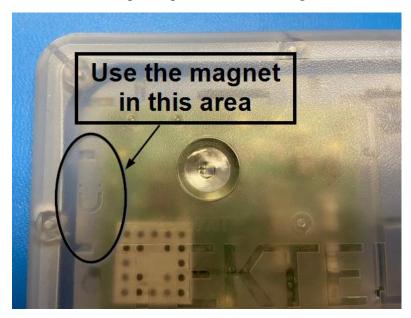


Figure 1-1: Reed Switch Location

Here are the steps as illustrated in Figure 1-2:

- 1. Attach the magnet to the enclosure at the magnet sign, and hold it for at least 3 sec but less than 10 sec.
- 2. Keep the magnet away for at least 3 sec.

As soon as the specified magnetic pattern is applied to the Agriculture Sensor, the Agriculture Sensor is reset and tries to join the network. It may take about 10 sec from the Agriculture Sensor reset to seeing the LED activity showing join attempts. Therefore, as step 1 in the above is completed, it takes about 13 seconds before observing the LED activity (if step 2 is respected).

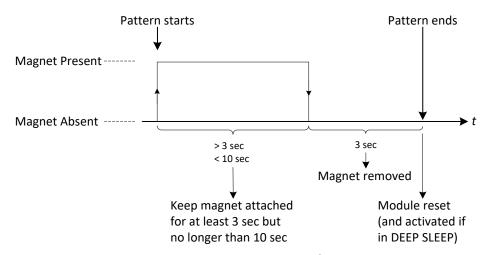


Figure 1-2: Agriculture Sensor magnetic reset/wake-up pattern

2) Triggering the Agriculture Sensor to uplink something upon observing a magnetic pattern:

This is used to get the LoRaWAN Class-A Agriculture Sensor to open a receive window so it can receive DL commands from the NS, or simply to trigger the Agriculture Sensor to uplink some desired transducer data.

The magnetic pattern in this case is not user configurable, and involves attaching and taking away the magnet to and from the magnet sign at the top of the enclosure once, all in less than 2 sec, as shown in Figure 6. It is important to note here that mistakenly holding the magnet attached to the module for more than 3 sec may trigger a module reset, as explained in item 1.

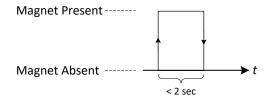


Figure 1-3: Agriculture Sensor magnetic UL-triggering pattern

PLEASE NOTE: Triggering an uplink with a short presence of the magnet (as described above) will result in a BLANK uplink on the NS.

Note: Replacing the batteries of the Agriculture Sensor does not cause the Agriculture Sensor to go to DEEP SLEEP. As soon as a new battery is inserted, the Agriculture Sensor boots up and tries to join a LoRaWAN network.

2 UL Payload Formats

The UL streams (from the Sensor to the NS) include;

- the readings obtained from on-board transducers (sent on LoRaWAN port 10);
- Response to configuration and control commands from the NS (sent on LoRaWAN port 100)

These are explained in Sections 2.1 & 2.2, respectively.

2.1 Frame Payload to Report Transducers Data

Each data field from the Sensor is encoded in a frame format shown in Figure 2-1. A big-endian format (MSB first) is always followed.

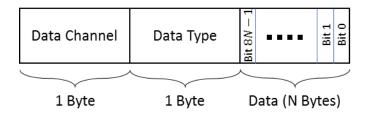


Figure 2-1: The UL frame payload format

A Sensor message payload can include multiple transducer data frames. Frames can be arranged in any order. A single payload may include data from any given transducer. The Agricultural Sensor frame payload values for transducers data are shown in Table 2-1. In this table, B_i refers to data byte indexed i as shown in Table 2-1. Transducers data in the UL are sent through *LoRaWAN port 10*.

Table 2-1:	UL Frame Pa	/load Values	for Transc	lucers Data
-------------------	--------------------	--------------	------------	-------------

Information Type	Channel ID	Type ID	Size (Byte s)	Data Type	Data Format	JSON Variable (Type/Unit)
Battery Status	0x00	0xBA⁵	1	Analog	 Bits 0-6: (Voltage * 10mV) + 2.5⁶ Bit 7: EoS Alert (0 = No Alert, 1 = Alert)⁷ 	battery_voltage: <value> (unsigned/10mV/LSB) eos_alert: <value> (unsigned/no unit)</value></value>

⁵ For SW version 0.2.5, this register is 0x 00 FF.

⁶ For SW version 0.2.5, data format is unsigned, 1%/LSB.

⁷ Not supported in software version 0.3 or less.

Input 1 (Soil	0x01	0x04	2	Count	Unsigned	input1_frequency: <value></value>
Moisture) ⁸					• 1 kHz/LSB	(unsigned/Hertz)
Input 2 (Soil	0x02	0x02	2	Analog	Unsigned	input2_voltage: <value></value>
Temperature) ⁹					• 1 mV/LSB	(unsigned/volt)
Input 3	0x03	0x02	2	Analog	Unsigned	Input3_voltage: <value></value>
(Analog)					• 1mV/LSB	(unsigned/volt)
Input 4	0x04	0x02	2	Analog	Unsigned	Input4_voltage: <value></value>
(Analog)					• 1mV/LSB	(unsigned/volt)
Watermark 1	0x05	0x04	2	Count	Unsigned	watermark1: <value></value>
(Soil Water					• 1 Hz/LSB	(unsigned/Hz)
Tension) ¹⁰						
Watermark 2	0x06	0x04	2	Count	Unsigned	watermark2: <value></value>
(Soil Water					1 Hz/LSB	(unsigned/Hz)
Tension) ¹¹						
Ambient Light	0x09	0x65	2	Illuminance	Unsigned	light_intensity: <value></value>
Intensity					• 1 lx/LSB	(unsigned/lux)
Ambient Light	0x09	0x00	1	Digital	• Boolean	light_detected: <value></value>
Alarm					• 0x00 = No alarm	(unsigned/no unit)
					0xFF = Alarm	
Accelerometer	0x0A	0x71	6	Accelerometer	■ B ₀ -B ₁ : X data	acceleration {
Data					• B ₂ -B ₃ : Y data	xaxis: <value>,</value>
					• B ₄ -B ₅ : Z data	(signed/g)
					• Signed	
					1 milli- $g/$ LSB	yaxis: <value>,</value>
						(signed/g)
						zaxis: <value></value>
						(signed/g)
						}

⁸ The raw reading should be converted to soil moisture for the **SOIL SURFACE MOUNT** sensor. This will be provided in the data converter provided by Tektelic.

⁹ The raw reading should be converted to soil temperature for the **SOIL SUFACE MOUNT** sensor. This will be provided in the data converter provided by Tektelic.

¹⁰ The raw reading should be converted to soil water tension (kPa) for the **ELEVATED MOUNT** sensor. This will be provided in the data converter provided by Tektelic.

¹¹ The raw reading should be converted to soil water tension (kPa) for the **ELEVATED MOUNT** sensor. This will be provided in the data converter provided by Tektelic.

Orientation	0x0A	0x00	1	Digital	Boolean	orientation_alarm: <value></value>
Alarm					• 0x00 = No orientation	(unsigned/no unit)
					alarm	
					• 0xFF = Orientation	
					alarm	
Ambient	0x0B	0x67	2	Temperature	Signed	ambient_temperature: <value></value>
Temperature					• 0.1°C/LSB	(signed/celsius)
Ambient RH	0x0B	0x68	1	RH	Unsigned	relative_humidity: <value></value>
					• 0.5%/LSB	(unsigned/1% percentage)
MCU	0x0C	0x67	2	Temperature	Signed	mcu_temperature: <value></value>
Temperature					• 0.1°C/LSB	(signed/celsius)

Example Uplink Payloads

- 0x 01 04 05 79 02 02 02 d5 0a 00 ff
 - o 0x 01 04 (Soil Moisture) = 0x 05 79 = 1401kHz
 - \circ 0x 02 02 (Soil Temperature) = 0x 02 d5 = 725mV
 - o 0x 0a 00 (Orientation alarm) = 0x ff = orientation alarm
- 0x 00 ff 01 68
 - 0x 00 ff (Battery Report) = (0x 01 68) x 1% = 360 x 0.01 = 3.6V
- 0x 09 65 00 00 0b 67 00 e1 0b 68 92
 - 0x 09 65 (Ambient Light Intensity) = 0x 00 00 = 0 lux (no light)
 - 0x 0b 67 (Ambient Temperature) = (0x 00 e1) x 0.1°C = 22.5°C
 - \circ 0x 0b 68 (Ambient RH) = (0x 92) x 0.5% = 73%

2.2 Data Conversions for Inputs 1, 2, & Watermarks 1, 2

NOTE: Sections 2.2.1 & 2.2.2 below apply to <u>Soil Surface Mount</u> model only. Section 2.2.3 below applies to <u>Elevated Mount</u> model only.

2.2.1 Soil Moisture (Input 1) Conversion

Input 1 readings are a frequency presented in **kHz**. Please refer to Table 2-2 below for a conversion from frequency to GWC.

Table 2-2 Input 1 GWC Conversion

GWC	Frequency range		
Dry	1402	1399	
0.1	1399	1396	
0.2	1396	1391	
0.3	1391	1386	
0.4	1386	1381	
0.5	1381	1376	
0.6	1376	1371	
0.7	1371	1366	
0.8	1366	1361	
0.9	1361	1356	
1	1356	1351	
1.1	1351	1346	
1.2	1346	1341	
Wet	1341	1322	

2.2.2 Soil Temperature (Input 2) Conversion

Input 2 will provide a voltage reading. This formula can be used to convert the mV reading from Input 2 to a temperature: -32.46ln(x) + 236.36

x = mV reading from Input 2 (register 0x 02 02)

The Excel worksheet below acts as a look-up table for the conversion of mV to soil temperature.

2.2.3 Watermark 1 & 2 Conversion

Watermark 1 & 2 will provide frequency readings. A reading of soil temperature from the thermistor will also be taken into account when calculating the final kPa value of soil water tension, for increased accuracy.

Final kPa of soil water tension is calculated by the following steps:

1) Obtain a reading of the frequency from Watermarks 1 or 2 or both. These are registers 0x 05 04 and 0x 06 04 respectively. Table 2-3 below can be used for conversion of the frequencies read from the Watermarks to get an **initial** kPa value. From Table 2-3, use the column on the right to find the appropriate range that the reading from the Watermarks fits into. Then use the formula directly to the left (from the left column) to calculate the kPa of soil water tension.

Table 2-3 Watermark 1 & 2 Conversion

kPa = 0	for $Hz > 6430$
kPa = 9 - (Hz - 4330) * 0.004286	for 4330 <= Hz <= 6430
kPa = 15 - (Hz - 2820) * 0.003974	for 2820 <= Hz <= 4330
kPa = 35 - (Hz - 1110) * 0.01170	for 1110 <= Hz <= 2820
kPa = 55 - (Hz - 770) * 0.05884	for 770 <= Hz <= 1110
kPa = 75 - (Hz - 600) * 0.1176	for 600 <= Hz <= 770
kPa = 100 - (Hz - 485) * 0.2174	for 485 <= Hz <= 600
kPa = 200 - (Hz - 293) * 0.5208	for 293 <= Hz <= 485
kPa = 200	for Hz < 293

2) Obtain a reading from input 3 or 4 or both. These are registers 0x 03 02, 0x 04 02 respectively. Use the equation below to calculate a temperature from the mV reading.

Temp =
$$-31.96ln(x)+213.25$$

x = mV reading from input 3 or 4

This calculation represents the soil temperature.

3) Perform this next step only if the soil temperature varies from 24°C. Using the initial kPa value calculated in step #1, and the soil temperature calculated in step #2, calculate a 'temperature adjusted' kPa of soil water tension by using this formula:

from step #2

$$kPa_{24} := kPa * (1 - 0.019* (^{\circ}C - 24))$$

from step #1

2.3 Response to Configuration and Control Commands

Sensor responses to DL configuration and control commands (which are sent on LoRaWAN port 100; see Section 3.1) are sent in the UL on *LoRaWAN port 100*. These responses include:

- Returning the value of a configuration register in response to an inquiry from the NS.
- Writing to a configuration register.

In the former case, the Sensor responds by the address and value of each of the registers under inquiry (this can be in one or more consecutive UL packets depending on the maximum frame payload size allowed). In the latter case, the Sensor responds with a CRC32 of the entire DL payload (which may be a combination of read and write commands) as the first four bytes of the UL frame. If the DL payload has also had read commands, the four CRC32 bytes are followed by the address and value of each of the registers under inquiry (similar to the Sensor response in the former case).

3 DL Payload Formats

The DL stream (from the NS to the Sensor) supported by the SW includes; Configuration and control commands used to change the Sensor's behavior (sent on LoRaWAN port 100), and is explained in Section 3.1.

3.1 Configuration and Control Commands

A single DL configuration and control message can contain multiple command blocks, with a possible mix of read and write commands. Each message block is formatted as shown in Figure 3-1. A big-endian format (MSB first) is always followed.

The Command Field has a "register" address that is used to access various configuration parameters. These addresses are bound between 0x00 and 0x7F.

Bit 7 of the Command Field determines whether a read or write action is being performed. To write to a register, this bit must be set to 1 (one), but to read a register, it must be set to 0 (zero). All read commands are one-byte long. Data following a read access command will be interpreted as a new command block. Read commands are processed last. For example, in a single DL message, if there is a read command from a register and a write command to the same register, the write command is executed first.

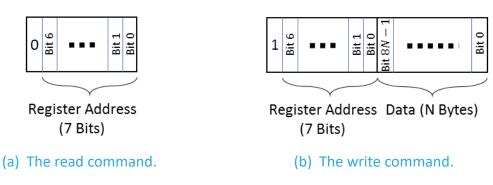


Figure 3-1: The format of a DL configuration and control message block

All DL configuration and control commands are sent on LoRaWAN port 100.

When a write command is sent to the Sensor, the Sensor immediately responds with a CRC32 of the entire DL payload as the first 4 bytes of the UL frame on *LoRaWAN port 100* (also see Section 2.3).

DL configuration and control commands fall into one of the following 4 (four) categories and are discussed in Sections 3.1.1, 3.1.2, and 3.1.3, respectively:

- LoRaMAC Configuration
- Application Configuration
- · Command and Control

3.1.1 LoRaMAC Configuration

LoRaMAC options can be configured using DL commands. These configuration options change the default MAC configuration that the Sensor loads on start-up. They can also change certain run-time parameters. Table 3-1 shows the MAC configuration registers. In this table, B_i refers to data byte indexed i as defined Figure 3-1.

Table 3-1: LoRaMAC Configuration Registers

Address	Access	Value	Size (Bytes)	Description	JSON Variable (Type/Unit)
0x10	R/W	Join Mode	2	 Bit 15: 0/1 = ABP/OTAA mode Bits 0-14: Ignored 	loramac_join_mode: <value> (unsigned/no unit)</value>
0x11	R/W	Unconfirmed/ Confirmed UL Disable/Enable Duty Cycle Disable/Enable ADR	2	 Bit 0: 0/1 = Unconfirmed/Confirmed UL Bit 1 = 1 (RO): 0/1 = Private/Public Sync Word Bit 2: 0/1 = Disable/Enable Duty Cycle Bit 3: 0/1 = Disable/Enable ADR Bits 4-11: Ignored Bits 12-15: 0x0: Class A 0xC: Class C 	loramac_opts {
0x12	R/W	 Default DR number Default Tx Power number¹⁷ 	2	 Bits 8-11: Default DR number Bits 0-3: Default Tx power number Bits 4-7, 12-15: Ignored 	loramac_dr_tx {
0x13	R/W	Rx2 window channel frequency	5	 Bits 8-39: Channel frequency in Hz for Rx2 Bits 0-7: DR for Rx2 	loramac_rx2 { frequency: <value>, (unsigned/Hertz)</value>

 $^{^{17}}$ Tx power number m translate to the maximum Tx power, which is a function of the LoRaWAN RF region, minus $2 \times m$ dB.

-

Rx2 window	DR	dr_number: <value></value>	
number		(unsigned/no unit) }	

Note: Modifying these values only changes them in the Sensor device. Options for the Sensor in the NS also need to be changed in order to not strand a Sensor. Modifying configuration parameters in the NS is outside the scope of this document.

3.1.1.1 Default Configuration

Table 3-2 and Table 3-4 list the default values for the LoRaMAC configuration registers (cf. [1], [2]).

Table 3-2: Default Values of LoRaMAC Configuration Registers

Address	Default Value			
0x10	OTAA mode			
0x11	Unconfirmed UL			
	Duty cycle enabled ¹⁸			
	ADR enabled			
	Class A			
0x12	• DRO			
	Tx Power 0 (max power; see Table 3-3)			
0x13	As per Table 3-4			

Table 3-3: Default Maximum Tx Power in Different Regions

RF Region	Max Tx EIRP [dBm]
EU868	16
US915	30
AS923	16
AU915	30
IN865	30
KR920	14
RU864	16

Agriculture Sensor TRM
TEKTELIC Communications Inc.

¹⁸ In the LoRa RF regions where there is no duty cycle limitation, such as US915, the "enabled duty cycle" configuration of the Sensor is ignored.

Table 3-4: Default Values of Rx2 Channel Frequency and DR Number in Different Regions

RF Region	Channel Frequency [Hz]	DR Number
EU868	869525000	0
US915	923300000	8
AS923	923200000	2
AU915	923300000	8
IN865	866550000	2
KR920	921900000	0
RU864	869100000	0

3.1.2 Application Configuration

This section lists all possible application configurations (as part of DL configuration and control commands), including periodic TX configuration, and threshold configuration.

3.1.2.1 Periodic TX Configuration

All periodic transducer reporting is synchronized around 1. A *tick* is simply a user configurable time-base that is used to schedule transducer measurements. For each transducer, the number of elapsed *ticks* before transmitting can be defined, as shown in Table 3-5.

Table 3-5: Periodic Transmission Configuration Registers

Address	Access	Value	Size (Bytes)	Description	JSON Variable (Type/Unit)
0x20	R/W	Seconds per Core	4	• <i>Tick</i> value for periodic	seconds_per_core_tick:
		Tick		events	<value></value>
				 Acceptable values: 0, 	(unsigned/no unit)
				30, 61,, 86400	
				• 0 disables all periodic	
				transmissions	
				Other values: Invalid	
				and ignored	
0x21	R/W	Ticks per Battery	2	• Ticks between	tick_per_battery: <value></value>
				battery reports	(unsigned/no unit)
				 0 disables periodic 	
				battery reports	
0x22	R/W	Ticks per	2	• Ticks between	tick_per_ambient_temperat
		Ambient		ambient temperature	ure: <value></value>
		Temperature		reports	(unsigned/no unit)
				 0 disables periodic 	
				ambient temperature	
				reports	

0x23	R/W	Ticks per Ambient RH	2	 Ticks between ambient RH reports 0 disables periodic ambient RH reports 	tick_per_relative_humidity: <value> (unsigned/no unit)</value>
0x24	R/W	Ticks per Ambient Light	2	 Ticks between ambient light reports 0 disables periodic ambient light reports 	tick_per_light: <value> (unsigned/no unit)</value>
0x25	R/W	Ticks per Input 1 (Soil Moisture)	2	 Ticks between Input 1 reports 0 disables periodic Input 1 reports 	tick_per_input1: <value> (unsigned/no unit)</value>
0x26	R/W	Ticks per Input 2 (Soil Temperature)	2	 Ticks between Input 2 reports 0 disables periodic Input 2 reports 	tick_per_input2: <value> (unsigned/no unit)</value>
0x27	R/W	Ticks per Input 3*	2	 Ticks between Input 3 reports 0 disables periodic Input 3 reports 	tick_per_input3: <value> (unsigned/no unit)</value>
0x28	R/W	Ticks per Input 4*	2	 Ticks between Input 4 reports 0 disables periodic Input 4 reports 	tick_per_input4: <value> (unsigned/no unit)</value>
0x29	R/W	Ticks per Watermark 1 (Soil Water Tension)*	2	 Ticks between Watermark 1 reports 0 disables periodic Watermark 1 reports 	tick_per_watermark1: <value> (unsigned/no unit)</value>
0x2A	R/W	Ticks per Watermark 2 (Soil Water Tension)*	2	 Ticks between Watermark 2 reports 0 disables periodic Watermark 2 reports 	tick_per_watermark2: <value> (unsigned/no unit)</value>
0x2C	R/W	Ticks per Accelerometer Data	2	 Ticks between accelerometer data reports 0 disables periodic accelerometer data reports 	tick_per_accelerometer: <value> (unsigned/no unit)</value>

0x2D	R/W	Ticks per Orientation Alarm	2	 Ticks between orientation alarm reports 0 disables periodic orientation alarm reports 	tick_per_orientation_alarm: <value> (unsigned/no unit)</value>
0x2E	R/W	Ticks per MCU Temperature	2	 Ticks between MCU temperature reports. 0 disables periodic MCU temperature reports 	tick_per_mcu_temperature: <value> (unsigned/no unit)</value>

^{*} APPLICABLE ONLY TO THE **ELEVATED MOUNT** MODULE

3.1.2.1.1 Seconds per Core Tick

All periodic TX events are scheduled in *ticks*. This allows for transducer reads to be synchronized, reducing the total number of ULs required to transmit Sensor data. The minimum seconds per *tick* is 30 seconds and the maximum is 86,400 seconds (one day). Values from 1 to 29 or above 86,400 are invalid and ignored. A value of 0 (zero) disabled all periodic reporting.

3.1.2.1.2 *Ticks* per <Transducer>

This register sets the reporting period for a transducer in terms of *ticks*. Once the configured number of *ticks* has expired, the Sensor polls the specified transducer and reports the data in an UL message. A setting of 0 (zero) disables periodic reporting for the specified transducer.

3.1.2.1.3 Default Configuration for **Soil Surface Mount**

Seconds per Core Tick	900 sec (15
	min)
Ticks per Battery	96 (1 day)
Ticks per Soil Moisture	1 (15 min)
Ticks per Soil Temperature	1 (15 min)
Ticks per Ambient Light	1 (15 min)
Ticks per Ambient RH	1 (15 min)
Ticks per Ambient Temperature	1 (15 min)
Ticks per Input 3	0 (disabled)
Ticks per Input 4	0 (disabled)
Ticks per Watermark 1	0 (disabled)
Ticks per Watermark 2	0 (disabled)
Ticks per Accelerometer	0 (disabled)
Ticks per Orientation	0 (disabled)
Ticks per MCU temperature	0 (disabled)

3.1.2.1.4 Default Configuration for **Elevated Mount**

Seconds per Core Tick	900 sec (15
	min)
Ticks per Battery	96 (1 day)
Ticks per Watermark 1	1 (15 min)
Ticks per Watermark 2	1 (15 min)
Ticks per Ambient Light	1 (15 min)
Ticks per Input 3	0 (disabled)
Ticks per Input 4	0 (disabled)
Ticks per Ambient Temperature	0 (disabled)
Ticks per Ambient RH	0 (disabled)
Ticks per Soil Moisture	0 (disabled)
Ticks per Soil Temperature	0 (disabled)
Ticks per Accelerometer	0 (disabled)
Ticks per Orientation	0 (disabled)
Ticks per MCU temperature	0 (disabled)

3.1.2.1.5 Default Example DL Messages

- Disable all periodic events:
 - o 0x: A0 00 00 00 00 (Reg 20, write bit set to TRUE)—Seconds per Core Tick = 0 (disabled)
- Read the current "Seconds per Core *Tick*" value:
 - o 0x: 20 (Reg 20, write bit set to FALSE)

- Write "Tick per Ambient Temperature" and "Ticks per Ambient RH":
 - 0x: A2 00 01 A3 00 02 (Reg 22 and Reg 23, write bit set to TRUE)—set "Ticks per Ambient Temperature" to 1 (one) and "Ticks per Ambient RH" to 2 (two)

3.1.2.2 Threshold-Based Configuration

The Sensor and the Sensor and Probe modules support a total of 9 threshold-based transmissions:

- Ambient Temperature
- Ambient RH
- Input 1 (Soil Moisture in the Soil Surface Mount module)
- Input 2 (Soil Temperature in **Soil Surface Mount** module)
- Input 3 (Analog input for the **Elevated Mount** module)
- Input 4 (Analog input for the **Elevated Mount** module)
- Watermark 1 (Soil Water Tension for **Elevated Mount** module)
- Watermark 2 (Soil Water Tension for **Elevated Mount** module)
- MCU Temperature

When a threshold is enabled, the Sensor (and Probe) reports the transducer value when it leaves the configured threshold window, and once again when the transducer value re-enters the threshold window. Inside the configured threshold window is called the Idle State. Outside the window is the Active Sate.

The threshold mode can be enabled concurrently with periodic reporting. The sensor transducer will be reported at its scheduled periodic interval, and also if the threshold is triggered. Table 3-6 shows configuration parameters for the threshold-based operation of the Sensor (and Probe).

Table 3-6: Threshold-Based Transmission Configuration

Address	Access	Value	Size	Description	JSON Variable (Type/Unit)
			[Bytes]		
0x30	R/W	Ambient	4	Sample period of	temperature_relative_humidity_idle: <value></value>
		Temperature/R		Ambient	(unsigned/second)
		H Sample		Temperature/RH	
		Period: Idle		in sec in Idle State	
		State			
0x31	R/W	Ambient	4	Sample period of	temperature_relative_humidity_active:
		Temperature/R		Ambient	<value></value>

		H Sample		Temperature/RH	(unsigned/second)
		Period: Active		in sec in Active	(unsigned/second)
0x32	D /\A/	State	2	State	supplicate to a supplicate up the supplicate (
UX32	R/W	Ambient	2	o Bits 8-15: High	ambient_temperature_threshold {
		Temperature		temperature	high: <value></value>
		Thresholds		threshold	(signed/celsius)
				➤ Signed,	
				1°C/LSB	low: <value></value>
				○ Bits 0-7: Low	(signed/celsius)
				temperature	}
				threshold	
				Signed,	
				1°C/LSB	
0x33	R/W	Ambient	1	• Bit 0:	ambient_temperature_threshold_enabled:
		Temperature		> 0 = Disabled	<value></value>
		Threshold		➤ 1 = Enabled	(unsigned/no unit)
		Enabled		• Bits 1-7:	
				Ignored	
0x34	R/W	RH Thresholds	2	⊙ Bits 8-15: High	relative_humidity_threshold {
				RH threshold	high: <value>,</value>
				Unsigned,	(unsigned/1% percentage)
				1%/LSB	
				oBits 0-7: Low RH	low: <value></value>
				threshold	(unsigned/1% percentage)
				Unsigned,	}
				1%/LSB	·
				High threshold ≤	
				Low threshold:	
				Invalid and	
				ignored	
0x35	R/W	RH Threshold	1	○ Bit 0:	relative_humidity_threshold_enabled: <value></value>
CASS	', ''	Enabled	1	> 0 = Disabled	(unsigned/no unit)
		Litabled		> 1 = Enabled	(ansigned, no anit)
				o Bits 1-7:	
				Ignored	
0x36	R/W	Input Sample	4	Sample period of	input sample period idle: <value></value>
0,00	11, 00	Period: Idle	-	Input 1/Input 2 in	(unsigned/second)
		State		sec in Idle State	
0v27	D /\A/		1	ļ	input sample period actives actives
0x37	R/W	Input Sample	4	Sample period of	input_sample_period_active: <value></value>
		Period: Active		Input 1/Input 2 in	(unsigned/second)
		State		sec in Active State	

0x38	R/W	Input 1	4	○ Bits 16-31: High	input1_threshold {
0,30	11,7 00	Thresholds	-	threshold	high: <value>,</value>
		Tillesilolus		Unsigned, 1	(unsigned/mV)
				kHz / LSB	(unsigned/mv)
				• Bits 0-15: Low	low: <value></value>
				threshold	(unsigned/mV)
				Unsigned, 1	
				kHz / LSB	}
0x39	R/W	Innut 2	4		innut2 throchold (
0x39	K/VV	Input 2	4	o Bits 16-31: High	input2_threshold {
		Thresholds		temperature	high: <value>,</value>
				threshold	(unsigned/Hertz)
				Unsigned, 1	
				mV/LSB	low: <value></value>
				○ Bits 0-15: Low	(unsigned/Hertz)
				temperature	}
				threshold	
				OUnsigned, 1	
				mV/LSB	
0x3A	R/W	Input 3	4	○ Bits 16-31: High	Input3_threshold {
		Thresholds*		threshold	high: <value>,</value>
				Unsigned, 1	(unsigned/mV)
				mV / LSB	
				• Bits 0-15: Low	low: <value></value>
				threshold	(unsigned/mV)
				○Unsigned, 1 mV	}
				/ LSB	
0x3B	R/W	Input 4	4	○ Bits 16-31: High	Input4_threshold {
		Thresholds*		threshold	high: <value>,</value>
				Unsigned, 1	(unsigned/mV)
				mV / LSB	
				• Bits 0-15: Low	low: <value></value>
				threshold	(unsigned/mV)
				o Unsigned, 1 mV	}
				/ LSB	
0x3C	R/W	Watermark 1	4	○ Bits 16-31: High	watermark1_threshold {
		Thresholds		threshold	high: <value>,</value>
				Unsigned, 1	(unsigned/Hertz)
				Hz / LSB	
				o Bits 0-15: Low	low: <value></value>
				threshold	(unsigned/Hertz)
					}
L	1		1		,

		Thresholds		threshold	high: <value>,</value>
				Unsigned, 1	(unsigned/Hertz)
				Hz / LSB	
				○ Bits 0-15: Low	low: <value></value>
				threshold	(unsigned/Hertz)
				Unsigned, 1 Hz /	}
				LSB	
0x3F	R/W	Input Threshold	1	o Bit 0: Input 1	threshold_enabled {
		Enabled		> 0 = Disabled	input1: <value>,</value>
				➤ 1 = Enabled	(unsigned/no unit)
				o Bit 1: Input 2	
				> 0 = Disabled	input2: <value></value>
				➤ 1 = Enabled	(unsigned/no unit)
				o Bit 2: Input 3	
				> 0 = Disabled	Input3: <value></value>
				➤ 1= Enabled	(unsigned/no unit)
				o Bit 3: Input 4	
				> 0 = Disabled	Input4: <value></value>
				➤ 1 = Enabled	(unsigned/no unit)
				oBit 4: Input 5	
				(Watermark)	input5: <value>,</value>
				> 0 = Disabled	(unsigned/no unit)
				➤ 1 = Enabled	
				o Bit 5: Input 6	input6: <value></value>
				(Watermark)	(unsigned/no unit)
				> 0 = Disabled	
				1 = Enabled	}
				o Bit 6,7: Ignored	
0x40	R/W	MCU	4	Sample rate of	mcu_temperature_sample_period_idle:
		Temperature		MCU	<value></value>
		Sample Period:		Temperature in	(unsigned/seconds)
		Idle State		sec in Idle State	
0x41	R/W	MCU	4	Sample rate of	mcu_temperature_sample_period_active:
		Temperature		MCU	<value></value>
		Sample Period:		Temperature in	(unsigned/seconds)
		Active State		sec in Active State	

0x42	R/W	MCU	2	⊙ Bits 8-15: High	mcu_temperature_threshold {
		Temperature		temperature	high: <value>,</value>
		Thresholds		threshold	(signed/celsius)
				Signed,	
				1°C/LSB	low: <value></value>
				⊙Bits 0-7: Low	(signed/celsius)
				temperature	}
				threshold	
				Signed,	
				1°C/LSB	
				High threshold ≤	
				Low threshold:	
				Invalid and	
				ignored	
0x43	R/W	MCU	1	⊙Bit 0:	mcu_temperature_threshold_enabled:
		Temperature		> 0 = Disabled	<value></value>
		Threshold		> 1 = Enabled	(unsigned/no unit)
		Enabled		oBits 1-7:	
				Ignored	

^{*}APPLICABLE ONLY TO THE **ELEVATED MOUNT** MODULE

3.1.2.2.1 Ambient Temperature/Ambient RH/Input 1/Input 2/Input 5/MCU Temperature Sample Period: Idle State

The Idle State sample period determines how often the sensor transducer is checked when the reported value is within the threshold window. This value is given in seconds, with a minimum of 10 and a maximum of 86400.

Values smaller than 10 or larger than 86400 are invalid and ignored by the SW.

Note: When the threshold-based reporting is enabled first, the Sensor (and Probe) will start in the Idle State.

3.1.2.2.2 Ambient Temperature/Ambient RH/Input 1/Input 2/Input 5/MCU Temperature Sample Period: Active State

The Active State sample period determines how often the sensor transducer is checked when the reported value is outside the threshold window. This value is given in seconds, with a minimum of 10 and a maximum of 86400.

Values smaller than 10 or larger than 86400 are invalid and ignored by the SW.

3.1.2.2.3 Thresholds

The thresholds for different transducers are stored in a single 2-byte register, with the MSB byte storing the high threshold, and the LSB byte storing the low threshold. The high threshold must be greater than the low threshold.

3.1.2.2.4 Threshold Enabled

The Threshold Enabled register enables and disables the threshold reporting on the specified transducer. The "Thresholds" and "Sample Periods" can be configured, but are **not** activated unless the "Threshold Enabled" bit is set.

3.1.2.2.5 Default Configuration

Ambient Temperature/RH Sample Period: Idle State	60 s
Ambient Temperature/RH Sample Period: Active State	30 s
Ambient Temperature Thresholds	30°C/15°C
Ambient Temperature Threshold Enabled	Off
RH Thresholds	80%/20%
RH Threshold Enabled	Off
Input 1/Input 2 Sample Period: Idle State	60 s
Input 1/Input 2 Sample Period: Active State	30 s
Input 1 Thresholds	61kHz/21kHz
Input 1 Threshold Enabled	Off
Input 2 Thresholds	1.5 V/0.5 V
Input 2 Threshold Enabled	Off
Input 3 Thresholds	1.5 V/0.5 V
Input 3 Threshold Enabled	Off
Input 4 Thresholds	1.5 V/0.5 V
Input 4 Threshold Enabled	Off
Watermark 1 Sample Period: Idle State	60 s
Watermark 1 Sample Period: Active State	30 s
Watermark 1 Thresholds	6 kHz/1 kHz
Watermark 1 Threshold Enabled	Off
Watermark 2 Thresholds	6 kHz/1 kHz
Watermark 2 Threshold Enabled	Off
MCU Temperature Sample Period: Idle State	60 s
MCU Temperature Sample Period: Active State	30 s
MCU Temperature Thresholds	30°C/15°C
MCU Temperature Threshold Enabled	Off
<u> </u>	

3.1.2.2.6 Example DL Messages

- o Read all threshold-based configuration registers
 - o 0x 30 31 32 33 34 35 36 37 38 39 3C 3D 3F 40 41 42 43

3.1.2.3 Ambient Light Configuration

The ALS offers an upper and a lower threshold for interrupt-based detections. It can also be polled periodically. The ALS is always on and enabled, but operates at a low-power mode where measurements are automatically taken every 800 ms. The integration time for each measurement is at least 100 ms and at most 800 ms, and is automatically and optimally set by the transducer for the best results. Table 3-7 shows a list of ALS configuration registers.

Table 3-7: ALS Configuration Registers

Address	Access	Value	Size	Description	JSON Variable (Type/Unit)
			[Bytes]		
0x48	R/W	Interrupt	1	• Bit 0:	interrupt_enabled: <value></value>
		Enabled		0 = Interrupt disabled	(unsigned/no unit)
				1 = Interrupt enabled	
				○ Bits 1-7: Ignored	
0x49	R/W	Upper	2	○ Unsigned	upper_threshold: <value></value>
		Threshold		○ 1 lx/LSB	(unsigned/lx)
0x4A	R/W	Lower	2	○ Unsigned	lower_threshold: <value></value>
		Threshold		o 1 lx/LSB	(unsigned/lx)
0x4B	R/W	Ambient	4	Sample period of Ambient	light_sample_period_inactive:
		Light		Light in sec in Inactive State	<value></value>
		Sample			(unsigned/second)
		Period in			
		Inactive			
		State			
0x4C	R/W	Ambient	4	Sample period of Ambient	light_sample_period_active:
		Light		Light in sec in Active State	<value></value>
		Sample			(unsigned/second)
		Period in			
		Active State			
0x4D	R/W	Value to Tx	1	• Bit 0:	als_tx {
				0 = Light alarm not	light_alarm_reported:
				reported	<value>,</value>
				1 = Light alarm reported	(unsigned/no unit)
				• Bit 1:	
				0 = Light intensity not	light_intensity_reported:
				reported	<value></value>

	> 1 = Light intensity	(unsigned/no unit)
	reported	}
	○ Bits 2-7: Ignored	

3.1.2.3.1 Interrupt Enabled

When the Interrupt Enabled bit is set, an alarm is raised whenever the light value leaves a window set by the upper and lower thresholds (registers 0x49 and 0x4A). The MCU starts sampling the light transducer with a sample period defined in register 0x4C while the light is outside of the threshold window. The MCU starts sampling the light transducer with a sample period defined in register 0x4B while the light is inside the threshold window. The alarm is cleared once the MCU samples the light transducer and determines the light value is within the threshold window. There is a time delay, equivalent to the sampling periods, to see the alarm state change depending on whether the light is entering or leaving the threshold window.

3.1.2.3.2 Upper Threshold

See Section 3.1.2.3.1. Acceptable values for the Upper Threshold are 1, 2... 65535. Any other value is invalid and ignored. Also, any value smaller than or equal to the Lower Threshold is invalid and ignored.

3.1.2.3.3 Lower Threshold

See Section 3.1.2.3.1. Acceptable values for the Lower Threshold are 0, 1... 65535. Any other value is invalid and ignored. Also, any value greater than or equal to the Upper Threshold is invalid and ignored.

3.1.2.3.4 Ambient Light Sample Period in Inactive State

See Section 3.1.2.3.1. Acceptable values for the Sample Period are 10, 11... 86400. Any other value is invalid and ignored.

3.1.2.3.5 Ambient Light Sample Period in Active State

See Section 3.1.2.3.1. Acceptable values for the Sample Period are 10, 11... 86400. Any other value is invalid and ignored.

3.1.2.3.6 Value to TX

When a light alarm is raised or when the light transducer is periodically polled, the data to transmit can be configured by this register.

3.1.2.3.7 Default Configuration

Table 3-8 shows the default values for the ALS configuration registers.

Table 3-8: Default Values of ALS Configuration Registers

Interrupt Enabled	Interrupt disabled
Upper Threshold	10,000 lx
Lower Threshold	1000 lx
Ambient Light Sample Period in Inactive State	60 sec
Ambient Light Sample Period in Active State	30 sec
Value to Tx	Only light intensity reported

3.1.2.3.8 Example DL Messages

- 0x 09 65 02 1f 0b 67 00 ec
 - o 0x 09 65 (Ambient Light Intensity) = 0x 02 1f = 543 lux
- 0x 09 65 05 ac 0b 67 00 f0
 - o 0x 09 65 (Ambient Light Intensity) = 0x 05 ac = 1452 lux

3.1.2.4 Accelerometer Configuration

The accelerometer transducer offers a threshold for event-based orientation detection. It can also be polled periodically for applications where the Sensor (and Probe) orientation may be of interest. Table 3-9 shows a list of accelerometer configuration registers.

Table 3-9: Accelerometer Configuration Registers

Address	Access	Value	# Bytes	Description	JSON Variable (Type/Unit)
0x50	R/W	Orientation Alarm Threshold	2	• Unsigned, 1° / LSB	orientation_alarm_threshold: <value> (unsigned/degree)</value>
0x51	R/W	Value to Tx	1	 Bit 0: D/1 = Orientation alarm not reported/reported Bit 5: O/1 = Orientation vector not reported/reported Bits 1-4,6,7: Ignored 	accelerometer_tx { orientation_alarm_reported: <value>, (unsigned/no unit) orientation_vector_reported: <value> (unsigned/no unit) }</value></value>
0x52	R/W	Mode	1	 Bit 0: 0/1 = Orientation alarm disabled/enabled Bit 1-6: Ignored Bit 7: 	mode { orientation_alarm_enabled: <value>, (unsigned/no unit) accelerometer_power_on: <value></value></value>

		• 0/1 = Accelerometer	(unsigned/no unit)
		power off/on	}

3.1.2.4.1 Orientation Alarm Threshold

This parameter is the tilt threshold for an orientation alarm to be raised. Tilt is measured from the sensors z-axis and the horizontal plane. Tilt events are reported immediately once they are triggered. First when the sensor exceeds the specified tilt, and again when proper orientation is restored. This value is greater than 0 (zero). A value of 0 (zero) is ignored.

3.1.2.4.2 Value to TX

When an orientation event is registered or when the accelerometer is periodically polled, the data to transmit can be configured by the end user. Available types are:

- Alarm: A single data byte to indicate that the Sensor was tripped.
- Full-Precision: milli-g values for each X/Y/Z axis of the accelerometer.

3.1.2.4.3 Mode

The accelerator can be powered on/off to tune power usage (battery life) for end-user application. Additionally, the Orientation Alarm can be enabled/disabled. Disabling a threshold prevents the Sensor from generating the applicable accelerometer event.

3.1.2.4.4 Default Configuration

Table 3-10 shows the default values for the accelerometer configuration registers.

Table 3-10: Default Values of Accelerometer Configuration Registers

Orientation Alarm Threshold	30°
Value to Tx	Orientation vector reported
Mode	Orientation alarm enabled,
	accelerometer power off

3.1.3 Command and Control

Configuration changes are not retained after a power cycle unless they are saved in the flash memory. Table 3-11 shows the structure of the Command and Control registers. In this table, B_i refers to data byte indexed i as defined in Figure 3-1.

Table 3-11: Sensor Command & Control Register

Address	Address Access Name Size Description JSON Variable (Type/Uni					
Address	Access	Ivaille	[Bytes]	Description	13ON Variable (Type/Onit)	
0x70	W	Flash	2	Bit 14:	write_to_flash {	
OA70	VV	Memory Write Command	2	• 0/1 = Do not write/Write LoRaMAC Config Bit 13:	app_configuration: <value>, (unsigned/no unit) lora_configuration: <value>,</value></value>	
				 0/1 = Do not write/Write App Config Bit 0: 0/1 = Do not restart/restart Agriculture Sensor Bits 1-12, 15: Ignored 	<pre>(unsigned/no unit) restart_sensor: <value> (unsigned/no unit) }</value></pre>	
0x71	R	FW Version	7	B ₀ : App version major B ₁ : App version minor B ₂ : App version revision B ₃ : LoRaMAC version major B ₄ : LoRaMAC version minor B ₅ : LoRaMAC version revision B ₆ : LoRaMAC region number	firmware_version { app_major_version: <value>, (unsigned/no unit) app_minor_version: <value>, (unsigned/no unit) app_revision: <value>, (unsigned/no unit) loramac_major_version: <value>, (unsigned/no unit) loramac_minor_version: <value>, (unsigned/no unit) loramac_revision: <value>, (unsigned/no unit)</value></value></value></value></value></value>	
					region: <value> (unsigned/no unit) }</value>	

0x72	W	Reset	1	• 0x0A = Reset App Config	configuration_factory_reset:
		Config		• 0xB0 = Reset LoRa Config	<value></value>
		Registers to		• 0xBA = Reset both App and	(unsigned/no unit)
		Factory		LoRa Configs	
		Defaults ¹⁹		• Any other value: Invalid and	
				ignored	

Note: The Flash Memory Write Command is always executed after the full DL configuration message has been decoded. The reset command should always be sent as an "unconfirmed" DL message. Failure to do so may cause the NS to continually reboot the Sensor.

3.1.3.1 LoRaMAC Region

The LoRaMAC region is indicated by B_6 in the FW Version register (Reg 0x71). Current LoRaMAC regions and corresponding region numbers are listed in Table 3-12.

Table 3-12: LoRaMAC Regions and Region Numbers

LoRaMAC Region	Region Number
EU868	0
US915	1
AS923	2
AU915	3
IN865	4
KR920	6
RU864	7

3.1.3.4 Command Examples

In the following examples, the Command Field is boldfaced:

- Write application configuration to flash memory
 - o DL payload: { 0x **F0** 20 00 }
- Write application and LoRa configurations to flash memory
 - DL payload: { 0x F0 60 00 }
- Reboot Device
 - o DL payload: { 0x F0 00 01 }
- Read FW versions, and reset application configuration to factory defaults
 - DL payload: { 0x 71 F2 0A }

¹⁹ Resetting to factory defaults takes effect on the next power cycle.

3.1.4 Preventing Sensor Bricking

Care has been taken to avoid stranding (hard or soft bricking) the Sensor during reconfiguration. Hard bricking refers to the condition that the Sensor does not transmit any more as all periodic and event-based reporting (see subsequent sections) have been disabled and the configuration has been saved to the Flash memory. Soft bricking refers to the condition where the Sensor has been configured such that all event-based reporting is disabled and any periodic reporting is either disabled or has a period of larger than a week. Therefore, transmissions from a soft-bricked Sensor cannot be smaller than a week apart.

To avoid these situations, for any reconfiguration command sent to the Sensor, the following algorithm is automatically executed:

After the reconfiguration is applied, if all event-based reporting (see Sections 3.1.2.1 and 3.1.2.3 for event-based reporting) is disabled, then periodic reporting is checked (see Section 3.1.2.1 for periodic reporting). If all periodic reporting is disabled or the minimum non-zero period is greater than a week, then to avoid bricking the Sensor, the core *tick* is set to 86,400 (i.e. one day), and the battery report *tick* is set to 1 (one).

References

- [1] LoRa Alliance, "LoRaWAN Specification," ver. 1.0.3, Jul 2018.
- [2] LoRa Alliance, "LoRaWAN Regional Parameters," ver. 1.1, rev. B, Jan 2018.